A novel Bayesian strategy for the identification of spatially varying material properties and model validation: An application to static elastography

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

36 Zitate (Scopus)

Abstract

The present paper proposes a novel Bayesian, a computational strategy in the context of model-based inverse problems in elastostatics. On one hand, we attempt to provide probabilistic estimates of the material properties and their spatial variability that account for the various sources of uncertainty. On the other hand, we attempt to address the question of model fidelity in relation to the experimental reality and particularly in the context of the material constitutive law adopted. This is especially important in biomedical settings when the inferred material properties will be used to make decisions/diagnoses. We propose an expanded parametrization that enables the quantification of model discrepancies in addition to the constitutive parameters. We propose scalable computational strategies for carrying out inference and learning tasks and demonstrate their effectiveness in numerical examples with noiseless and noisy synthetic data.

OriginalspracheEnglisch
Seiten (von - bis)249-268
Seitenumfang20
FachzeitschriftInternational Journal for Numerical Methods in Engineering
Jahrgang91
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 20 Juli 2012
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „A novel Bayesian strategy for the identification of spatially varying material properties and model validation: An application to static elastography“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren