A Multidimensional Graph Fourier Transformation Neural Network for Vehicle Trajectory Prediction

Marion Neumeier, Andreas Tollkuhn, Michael Botsch, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

6 Zitate (Scopus)

Abstract

This work introduces the multidimensional Graph Fourier Transformation Neural Network (GFTNN) for longterm trajectory predictions on highways. Similar to Graph Neural Networks (GNNs), the GFTNN is a novel network architecture that operates on graph structures. While several GNNs lack discriminative power due to suboptimal aggregation schemes, the proposed model aggregates scenario properties through a powerful operation: the multidimensional Graph Fourier Transformation (GFT). The spatio-temporal vehicle interaction graph of a scenario is converted into a spectral scenario representation using the GFT. This beneficial representation is input to the prediction framework composed of a neural network and a descriptive decoder. Even though the proposed GFTNN does not include any recurrent element, it outperforms state-of-the-art models in the task of highway trajectory prediction. For experiments and evaluation, the publicly available datasets highD and NGSIM are used.

OriginalspracheEnglisch
Titel2022 IEEE 25th International Conference on Intelligent Transportation Systems, ITSC 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten687-694
Seitenumfang8
ISBN (elektronisch)9781665468800
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung25th IEEE International Conference on Intelligent Transportation Systems, ITSC 2022 - Macau, China
Dauer: 8 Okt. 202212 Okt. 2022

Publikationsreihe

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
Band2022-October

Konferenz

Konferenz25th IEEE International Conference on Intelligent Transportation Systems, ITSC 2022
Land/GebietChina
OrtMacau
Zeitraum8/10/2212/10/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Multidimensional Graph Fourier Transformation Neural Network for Vehicle Trajectory Prediction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren