A multidimensional dynamic time warping algorithm for efficient multimodal fusion of asynchronous data streams

Martin Wöllmer, Marc Al-Hames, Florian Eyben, Björn Schuller, Gerhard Rigoll

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

63 Zitate (Scopus)

Abstract

To overcome the computational complexity of the asynchronous hidden Markov model (AHMM), we present a novel multidimensional dynamic time warping (DTW) algorithm for hybrid fusion of asynchronous data. We show that our newly introduced multidimensional DTW concept requires significantly less decoding time while providing the same data fusion flexibility as the AHMM. Thus, it can be applied in a wide range of real-time multimodal classification tasks. Optimally exploiting mutual information during decoding even if the input streams are not synchronous, our algorithm outperforms late and early fusion techniques in a challenging bimodal speech and gesture fusion experiment.

OriginalspracheEnglisch
Seiten (von - bis)366-380
Seitenumfang15
FachzeitschriftNeurocomputing
Jahrgang73
Ausgabenummer1-3
DOIs
PublikationsstatusVeröffentlicht - Jan. 2009

Fingerprint

Untersuchen Sie die Forschungsthemen von „A multidimensional dynamic time warping algorithm for efficient multimodal fusion of asynchronous data streams“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren