A MS-lesion pattern discrimination plot based on geostatistics

Robert Marschallinger, Paul Schmidt, Peter Hofmann, Claus Zimmer, Peter M. Atkinson, Johann Sellner, Eugen Trinka, Mark Mühlau

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

2 Zitate (Scopus)

Abstract

Introduction: A geostatistical approach to characterize MS-lesion patterns based on their geometrical properties is presented. Methods: A dataset of 259 binary MS-lesion masks in MNI space was subjected to directional variography. A model function was fit to express the observed spatial variability in x, y, z directions by the geostatistical parameters Range and Sill. Results: Parameters Range and Sill correlate with MS-lesion pattern surface complexity and total lesion volume. A scatter plot of ln(Range) versus ln(Sill), classified by pattern anisotropy, enables a consistent and clearly arranged presentation of MS-lesion patterns based on geometry: the so-called MS-Lesion Pattern Discrimination Plot. Conclusions: The geostatistical approach and the graphical representation of results are considered efficient exploratory data analysis tools for cross-sectional, follow-up, and medication impact analysis. A geostatistics-based MS-lesion pattern description is developed. The resulting graphical representations are considered efficient exploratory data analysis tools to accompany cross-sectional, follow-up, and medication impact analysis.

OriginalspracheEnglisch
Seiten (von - bis)1-14
Seitenumfang14
FachzeitschriftBrain and Behavior
Jahrgang6
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 1 März 2016

Fingerprint

Untersuchen Sie die Forschungsthemen von „A MS-lesion pattern discrimination plot based on geostatistics“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren