TY - JOUR
T1 - A modified search direction method for inequality constrained optimization problems using the singular-value decomposition of normalized response gradients
AU - Chen, Long
AU - Bletzinger, Kai Uwe
AU - Geiser, Armin
AU - Wüchner, Roland
N1 - Publisher Copyright:
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Motivated by the applications of the node-based shape optimization problems, where various response evaluations are often considered in constrained optimization, we propose a modified search direction method for optimization design updates. There exist numerous methods for solving constrained optimization problems. The methods of the class active-set strategy try to travel along the active constraints to solve constrained optimization problems. Contrary to the active-set methods, the algorithms of the class interior-point method reach an optimal solution by traversing the interior of the feasible domain. This characteristic is considered to be beneficial for shape optimization because the usual zig-zagging behavior when traveling along the active constraints is avoided. However, the interior-point methods require the solution of a Newton problem in each iteration step, which is generally considered to be difficult for the shape optimization problem. In the present work, we propose a modified search direction method that applies the singular-value decomposition method for the normalized objective and constraint gradients. The modified search direction is a descent direction of the objective function. Using this search direction for the design update in each iteration, we observe that the centrality conditions for the interior-point method are approached iteratively. We are able to achieve a local minimum by traversing the interior of the feasible domain by only using the gradient information of the objective and constraint functions. The results are shown first with analytical 2D problems, and then the results of shape optimization problems with a large number of design variables are discussed. To robustly deal with complex geometries, the Vertex Morphing method is used.
AB - Motivated by the applications of the node-based shape optimization problems, where various response evaluations are often considered in constrained optimization, we propose a modified search direction method for optimization design updates. There exist numerous methods for solving constrained optimization problems. The methods of the class active-set strategy try to travel along the active constraints to solve constrained optimization problems. Contrary to the active-set methods, the algorithms of the class interior-point method reach an optimal solution by traversing the interior of the feasible domain. This characteristic is considered to be beneficial for shape optimization because the usual zig-zagging behavior when traveling along the active constraints is avoided. However, the interior-point methods require the solution of a Newton problem in each iteration step, which is generally considered to be difficult for the shape optimization problem. In the present work, we propose a modified search direction method that applies the singular-value decomposition method for the normalized objective and constraint gradients. The modified search direction is a descent direction of the objective function. Using this search direction for the design update in each iteration, we observe that the centrality conditions for the interior-point method are approached iteratively. We are able to achieve a local minimum by traversing the interior of the feasible domain by only using the gradient information of the objective and constraint functions. The results are shown first with analytical 2D problems, and then the results of shape optimization problems with a large number of design variables are discussed. To robustly deal with complex geometries, the Vertex Morphing method is used.
KW - Centrality conditions
KW - Gradient-based constrained optimization
KW - Shape optimization
KW - Singular-value decomposition
KW - Vertex Morphing
UR - http://www.scopus.com/inward/record.url?scp=85067232923&partnerID=8YFLogxK
U2 - 10.1007/s00158-019-02320-9
DO - 10.1007/s00158-019-02320-9
M3 - Article
AN - SCOPUS:85067232923
SN - 1615-147X
VL - 60
SP - 2305
EP - 2323
JO - Structural and Multidisciplinary Optimization
JF - Structural and Multidisciplinary Optimization
IS - 6
ER -