A Model-Driven Architecture Approach to Accelerate Software Code Generation

Mayuri Bhadra, Daniela Sanchez Lopera, Robert Kunzelmann, Wolfgang Ecker

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

In the evolving domain of embedded programming, languages like Rust are gaining importance alongside the traditionally dominant C language. This highlights the need for different coding styles to achieve the same functionality due to the various challenges posed by different programming languages, subsets of language constructs, run time systems, CPU architectures, and hardware peripherals. It results in the manual creation of multiple code variants, leading to code duplication, and introducing laborious and error-prone processes. This paper introduces a model-based code generator aligned with the ModelDriven Architecture (MDA) that leverages software models. The proposed generator can be applied in the neural network (NN) domain, generating low-level driver code for NN primitives across various hardware devices, showcasing the adaptability of our approach. In this work, we specifically concentrate on core tensor math operators, the foundational elements of NN primitives, with emphasis on both RISC-V and standard CPU architectures. Using metamodeling, it creates unique configurations for each operator in the target code, offering an efficient and coherent alternative to manual coding. Our experimental results show a reduction of approximately a factor of 62, on average, in Source Lines of Code (SLoC) when employing our Model-Driven approach, as opposed to the SLoC generated for all variants when manually coded. This highlights the efficiency of our proposed solution by reducing the overall development effort and enhancing the efficiency of embedded software development.

OriginalspracheEnglisch
TitelProceedings - 2024 7th International Conference on Software and System Engineering, ICoSSE 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten23-30
Seitenumfang8
ISBN (elektronisch)9798350386592
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung7th International Conference on Software and System Engineering, ICoSSE 2024 - Paris, Frankreich
Dauer: 19 Apr. 202421 Apr. 2024

Publikationsreihe

NameProceedings - 2024 7th International Conference on Software and System Engineering, ICoSSE 2024

Konferenz

Konferenz7th International Conference on Software and System Engineering, ICoSSE 2024
Land/GebietFrankreich
OrtParis
Zeitraum19/04/2421/04/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Model-Driven Architecture Approach to Accelerate Software Code Generation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren