A method for the treatment of pedestrian trajectory data noise

George Kouskoulis, Constantinos Antoniou, Ioanna Spyropoulou

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

7 Zitate (Scopus)

Abstract

This paper provides an improved algorithm for eliminating noise of pedestrian trajectory data. Data have been collected from the field through video recordings. A semi-automatic process extracts pedestrian trajectories that include noise. The proposed algorithm relies on the Kalman filter framework. In particular, the Unscented Kalman Filter is employed for relaxing standard Kalman filter assumptions. An innovation of this paper is the incorporation of moving average in the Unscented Kalman Filter that provides more accurate pedestrian trajectory estimations. In addition, a procedure for evaluating Kalman filter noise covariance matrices is suggested. Algorithm results from real pedestrian trajectory data indicate high efficacy level in reducing data noise, thus improving their usefulness for calibrating and validating pedestrian simulation models.

OriginalspracheEnglisch
Seiten (von - bis)782-798
Seitenumfang17
FachzeitschriftTransportation Research Procedia
Jahrgang41
DOIs
PublikationsstatusVeröffentlicht - 2019
VeranstaltungInternational Scientific Conference on Mobility and Transport Urban Mobility ? Shaping the Future Together mobil.TUM 2018 - Munich, Deutschland
Dauer: 13 Juni 201814 Juni 2018

Fingerprint

Untersuchen Sie die Forschungsthemen von „A method for the treatment of pedestrian trajectory data noise“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren