A method for the predictive and automated detection of the shrink line location during the powder bed fusion of metals using a laser beam

Dominik Rauner, Daniel Wolf, Lukas Spano, Michael F. Zaeh

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

1 Zitat (Scopus)

Abstract

The powder bed fusion of metals using a laser beam enables the additive manufacturing of topology-optimized parts involving structural transitions and rapid cross-sectional changes. Both geometry features can cause shrink lines, which reduce the dimensional accuracy and the fatigue resistance of the manufactured part. To provide reduction measures, their point of origin needs to be located in advance. This work presents an algorithm capable of automatically predicting the shrink line location for arbitrary discretized geometries. The results demonstrate the reliable detection and layer-wise characterization of the shrink-line-causing geometry features. Suitable discretization parameters were derived and the dependence of the computational time on the part complexity was quantified.

OriginalspracheEnglisch
Seiten (von - bis)561-566
Seitenumfang6
FachzeitschriftProcedia CIRP
Jahrgang126
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung17th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME 2023 - Naples, Italien
Dauer: 12 Juli 202314 Juli 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „A method for the predictive and automated detection of the shrink line location during the powder bed fusion of metals using a laser beam“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren