A Machine Learning Approach to DoA Estimation and Model Order Selection for Antenna Arrays With Subarray Sampling

Andreas Barthelme, Wolfgang Utschick

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

44 Zitate (Scopus)

Abstract

In this paper, we study the problem of direction of arrival estimation and model order selection for systems employing subarray sampling. Thereby, we focus on scenarios, where the number of resolvable active sources is not smaller than the number of simultaneously sampled antenna elements, i.e., we operate above the conventional limit for most estimators. For this purpose, we propose new schemes based on neural networks and estimators that combine neural networks with gradient steps on the likelihood function. These methods are able to outperform existing estimators in terms of mean squared error and model selection accuracy, especially in the low snapshot domain, at a drastically lower computational complexity.

OriginalspracheEnglisch
Seiten (von - bis)3075-3087
Seitenumfang13
FachzeitschriftIEEE Transactions on Signal Processing
Jahrgang69
DOIs
PublikationsstatusVeröffentlicht - 2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Machine Learning Approach to DoA Estimation and Model Order Selection for Antenna Arrays With Subarray Sampling“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren