A machine learning approach for area prediction of hardware designs from abstract specifications

Elena Zennaro, Lorenzo Servadei, Keerthikumara Devarajegowda, Wolfgang Ecker

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

20 Zitate (Scopus)

Abstract

Advancements of Machine Learning (ML) in the field of computer vision have paved the way for its potential application in many other fields. Researchers and hardware domain experts are exploring possible applications of Machine Learning in optimizing many aspects of hardware development process. In this paper, we propose a novel approach for predicting the area of hardware components from specifications. The flow uses an existing RTL generation framework, for generating valid data samples that enable ML algorithms to train the learning models. The approach has been successfully employed to predict the area of real-life hardware components such as Control and Status Register (CSR) interfaces that are ubiquitous in embedded systems. With this approach we are able to predict the area with more than 98% accuracy and 600x faster than the existing methods. In addition, we are able to rank the features according to their importance in final area estimations.

OriginalspracheEnglisch
TitelProceedings - 21st Euromicro Conference on Digital System Design, DSD 2018
Redakteure/-innenNikos Konofaos, Martin Novotny, Amund Skavhaug
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten413-420
Seitenumfang8
ISBN (elektronisch)9781538673768
DOIs
PublikationsstatusVeröffentlicht - 12 Okt. 2018
Veranstaltung21st Euromicro Conference on Digital System Design, DSD 2018 - Prague, Tschechische Republik
Dauer: 29 Aug. 201831 Aug. 2018

Publikationsreihe

NameProceedings - 21st Euromicro Conference on Digital System Design, DSD 2018

Konferenz

Konferenz21st Euromicro Conference on Digital System Design, DSD 2018
Land/GebietTschechische Republik
OrtPrague
Zeitraum29/08/1831/08/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „A machine learning approach for area prediction of hardware designs from abstract specifications“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren