A high-order discontinuous Galerkin method for nonlinear sound waves

Paola F. Antonietti, Ilario Mazzieri, Markus Muhr, Vanja Nikolić, Barbara Wohlmuth

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

15 Zitate (Scopus)

Abstract

We propose a high-order discontinuous Galerkin scheme for nonlinear acoustic waves on polytopic meshes. To model sound propagation with losses through homogeneous media, we use Westervelt's nonlinear wave equation with strong damping. Challenges in the numerical analysis lie in handling the nonlinearity in the model, which involves the derivatives in time of the acoustic velocity potential, and in preventing the equation from degenerating. We rely in our approach on the Banach fixed-point theorem combined with a stability and convergence analysis of a linear wave equation with a variable coefficient in front of the second time derivative. By doing so, we derive an a priori error estimate for Westervelt's equation in a suitable energy norm for the polynomial degree p≥2. Numerical experiments carried out in two-dimensional settings illustrate the theoretical convergence results. In addition, we demonstrate efficiency of the method in a three-dimensional domain with varying medium parameters, where we use the discontinuous Galerkin approach in a hybrid way.

OriginalspracheEnglisch
Aufsatznummer109484
FachzeitschriftJournal of Computational Physics
Jahrgang415
DOIs
PublikationsstatusVeröffentlicht - 15 Aug. 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „A high-order discontinuous Galerkin method for nonlinear sound waves“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren