A hierarchical ASM/AAM approach in a stochastic framework for fully automatic tracking and recognition

Sascha Schreiber, Andre Störmer, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

This paper deals with the fully automatic extraction of classifiable person features out of a video stream with challenging background. Basically the task can be split in two parts: Tracking the object and extracting distinctive features. In order to track a person, a system composed of an Active Shape Model embedded in a particle filter framework has been built. The output - a shape representing the position and the geometry of the human's head - serves as an initial guess for the following Active Appearance Model, which enables high precision matching of the head's texture. In this way raw features are transformed into appearance parameters, which finally can be used for a variety of classification tasks. The novelty of this framework is the hierarchical combination using the similarities of the models as well as exploiting their differences to enhance robustness and performance in complex scenarios.

OriginalspracheEnglisch
Titel2006 IEEE International Conference on Image Processing, ICIP 2006 - Proceedings
Seiten1773-1776
Seitenumfang4
DOIs
PublikationsstatusVeröffentlicht - 2006
Veranstaltung2006 IEEE International Conference on Image Processing, ICIP 2006 - Atlanta, GA, USA/Vereinigte Staaten
Dauer: 8 Okt. 200611 Okt. 2006

Publikationsreihe

NameProceedings - International Conference on Image Processing, ICIP
ISSN (Print)1522-4880

Konferenz

Konferenz2006 IEEE International Conference on Image Processing, ICIP 2006
Land/GebietUSA/Vereinigte Staaten
OrtAtlanta, GA
Zeitraum8/10/0611/10/06

Fingerprint

Untersuchen Sie die Forschungsthemen von „A hierarchical ASM/AAM approach in a stochastic framework for fully automatic tracking and recognition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren