A general framework for event detection from social media

Khatereh Polous, André Freitag, Jukka Krisp, Liqiu Meng, Smita Singh

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

The availability of accurate and/or up-to-date mass data can stimulate the development of innovative approaches for the assessment of spatio-temporal processes. However, extracting meaningful information from these collections of user-generated data is a challenge. Event detection is an interesting concept in the era of Web 2.0 and ubiquitous Internet. Various existing event-detection algorithms share a very simple, yet powerful architecture model; pipes-&-filters. Using this model, the authors in this study developed a generic and extensible programming framework to find meaningful patterns out of heterogeneous and unstructured online data streams. The framework supports researchers with adapters to different social media platforms, optional preprocessing steps. Its graphical user interface supports users with an interactive graphical environment for setting up parameters and evaluating the results through maps, 3D visualization, and various charts. The framework has been successfully tested on Flicker and Instagram platforms for different time periods and locations to detect latent events.

OriginalspracheEnglisch
TitelAdvances in Spatial Data Handling and Analysis - Select Papers from the 16th IGU Spatial Data Handling Symposium
Redakteure/-innenYee Leung, Francis Harvey
Herausgeber (Verlag)springer berlin
Seiten85-105
Seitenumfang21
ISBN (Print)9783319199498
DOIs
PublikationsstatusVeröffentlicht - 2015
Veranstaltung16th International Symposium on Spatial Data Handling, SDH 2014 - Toronto, Kanada
Dauer: 6 Okt. 20148 Okt. 2014

Publikationsreihe

NameAdvances in Geographic Information Science
Band19
ISSN (Print)1867-2434
ISSN (elektronisch)1867-2442

Konferenz

Konferenz16th International Symposium on Spatial Data Handling, SDH 2014
Land/GebietKanada
OrtToronto
Zeitraum6/10/148/10/14

Fingerprint

Untersuchen Sie die Forschungsthemen von „A general framework for event detection from social media“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren