A general covariance-based optimization framework using orthogonal projections

Raphael Hunger, David A. Schmidt, Michael Joham, Wolfgang Utschick

Publikation: KonferenzbeitragPapierBegutachtung

26 Zitate (Scopus)

Abstract

We present a general framework for the minimization of a function which is parametrized by a set of covariance matrices over a constraint set. Since all covariance matrices have to obey the property of being positive semidefinite, this characteristic has to be reflected in the constraint set. In addition, the sum of all traces of the covariance matrices shall be upper bounded. Using a preconditioned gradient descent algorithm, we derive an orthogonal projection onto this constraint set in an easy to follow monolithic way such that it directly results from the definition of the projection. Interestingly, this projection allows for a descriptive water-spilling interpretation in the style of the well-known water-filling algorithm. Two possible applications are investigated: the sum mean-square-error minimization and the weighted sum-rate maximization for the MIMO broadcast channel. Simulations finally reveal the excellent performance of the proposed framework.

OriginalspracheEnglisch
Seiten76-80
Seitenumfang5
DOIs
PublikationsstatusVeröffentlicht - 2008
Veranstaltung2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2008 - Recife, Brasilien
Dauer: 6 Juli 20089 Juli 2008

Konferenz

Konferenz2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2008
Land/GebietBrasilien
OrtRecife
Zeitraum6/07/089/07/08

Fingerprint

Untersuchen Sie die Forschungsthemen von „A general covariance-based optimization framework using orthogonal projections“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren