A general boundary element method for homogeneous differential operators - Linear or nonlinear

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

For many engineering problems (e.g. anisotropic media) the fundamental solutions which are essential for boundary element methods (BEM) are not known analytically. Therefore, alternative boundary integral equations (BIE) are presented here which are obtained by a spatial Fourier transformation of the corresponding integral terms. In this transformed domain, the fundamental solution is always known and has a simple structure. Instead of transferring it back to the original domain (which is analytically often not possible) the already discretized unknowns are transferred into the transformed domain where all BIE are evaluated. The realization for isotropic and anisotropic plates (Kirchhoff) should visualize that this approach is possible for all homogeneous problems. First insights of the corresponding nonlinear BEM-formulations are given.

OriginalspracheEnglisch
TitelEuropean Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000
PublikationsstatusVeröffentlicht - 2000
VeranstaltungEuropean Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000 - Barcelona, Spanien
Dauer: 11 Sept. 200014 Sept. 2000

Publikationsreihe

NameEuropean Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000

Konferenz

KonferenzEuropean Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000
Land/GebietSpanien
OrtBarcelona
Zeitraum11/09/0014/09/00

Fingerprint

Untersuchen Sie die Forschungsthemen von „A general boundary element method for homogeneous differential operators - Linear or nonlinear“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren