A general approximation method for bicriteria minimization problems

Pascal Halffmann, Stefan Ruzika, Clemens Thielen, David Willems

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

6 Zitate (Scopus)

Abstract

We present a general technique for approximating bicriteria minimization problems with positive-valued, polynomially computable objective functions. Given 0<ϵ≤1 and a polynomial-time α-approximation algorithm for the corresponding weighted sum problem, we show how to obtain a bicriteria (α⋅(1+2ϵ),α⋅(1+[Formula presented]))-approximation algorithm for the budget-constrained problem whose running time is polynomial in the encoding length of the input and linear in [Formula presented]. Moreover, we show that our method can be extended to compute an (α⋅(1+2ϵ),α⋅(1+[Formula presented]))-approximate Pareto curve under the same assumptions. Our technique applies to many minimization problems to which most previous algorithms for computing approximate Pareto curves cannot be applied because the corresponding gap problem is NP-hard to solve. For maximization problems, however, we show that approximation results similar to the ones presented here for minimization problems are impossible to obtain in polynomial time unless P=NP.

OriginalspracheEnglisch
Seiten (von - bis)1-15
Seitenumfang15
FachzeitschriftTheoretical Computer Science
Jahrgang695
DOIs
PublikationsstatusVeröffentlicht - 26 Sept. 2017
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „A general approximation method for bicriteria minimization problems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren