A general approach for convergence analysis of adaptive sampling-based signal processing

Holger Boche, Ullrich J. Monich

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

It is well-known that there exist bandlimited signals for which certain sampling series are divergent. One possible way of circumventing the divergence is to adapt the sampling series to the signals. In this paper we study adaptivity in the number of summands that are used in each approximation step, and whether this kind of adaptive signal processing can improve the convergence behavior of the sampling series. We approach the problem by considering approximation processes in general Banach spaces and show that adaptivity reduces the set of signals with divergence from a residual set to a meager or empty set. Due to the non-linearity of the adaptive approximation process, this study cannot be done by using the Banach-Steinhaus theory. We present examples from sampling based signal processing, where recently strong divergence, which is connected to the effectiveness of adaptive signal processing, has been observed.

OriginalspracheEnglisch
Titel2015 International Conference on Sampling Theory and Applications, SampTA 2015
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten211-215
Seitenumfang5
ISBN (elektronisch)9781467373531
DOIs
PublikationsstatusVeröffentlicht - 2 Juli 2015
Veranstaltung11th International Conference on Sampling Theory and Applications, SampTA 2015 - Washington, USA/Vereinigte Staaten
Dauer: 25 Mai 201529 Mai 2015

Publikationsreihe

Name2015 International Conference on Sampling Theory and Applications, SampTA 2015

Konferenz

Konferenz11th International Conference on Sampling Theory and Applications, SampTA 2015
Land/GebietUSA/Vereinigte Staaten
OrtWashington
Zeitraum25/05/1529/05/15

Fingerprint

Untersuchen Sie die Forschungsthemen von „A general approach for convergence analysis of adaptive sampling-based signal processing“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren