A gallavotti-cohen-type symmetry in the large deviation functional for stochastic dynamics

Joel L. Lebowitz, Herbert Spohn

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

1209 Zitate (Scopus)

Abstract

We extend the work of Kurchan on the Gallavotti-Cohen fluctuation theorem, which yields a symmetry property of the large deviation function, to general Markov processes. These include jump processes describing the evolution of stochastic lattice gases driven in the bulk or through particle reservoirs, general diffusive processes in physical and/or velocity space, as well as Hamiltonian systems with stochastic boundary conditions. For dynamics satisfying local detailed balance we establish a link between the average of the action functional in the fluctuation theorem and the macroscopic entropy production. This gives, in the linear regime, an alternative derivation of the Green-Kubo formula and the Onsager reciprocity relations. In the nonlinear regime consequences of the new symmetry are harder to come by and the large deviation functional difficult to compute. For the asymmetric simple exclusion process the latter is determined explicitly using the Bethe ansatz in the limit of large N.

OriginalspracheEnglisch
Seiten (von - bis)333-365
Seitenumfang33
FachzeitschriftJournal of Statistical Physics
Jahrgang95
Ausgabenummer1-2
DOIs
PublikationsstatusVeröffentlicht - Apr. 1999

Fingerprint

Untersuchen Sie die Forschungsthemen von „A gallavotti-cohen-type symmetry in the large deviation functional for stochastic dynamics“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren