A Federated Learning Paradigm for Heart Sound Classification

Wanyong Qiu, Kun Qian, Zhihua Wang, Yi Chang, Zhihao Bao, Bin Hu, Bjorn W. Schuller, Yoshiharu Yamamoto

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

9 Zitate (Scopus)

Abstract

Cardiovascular diseases (CVDs) have been ranked as the leading cause for deaths. The early diagnosis of CVDs is a crucial task in the medical practice. A plethora of efforts were given to the automated auscultation of heart sound, which leverages the power of computer audition to develop a cheap, non-invasive method that can be used at any time and anywhere for measuring the status of the heart. Nevertheless, previous works ignore an important factor, namely, the privacy of the user data. On the one hand, learnt models are always hungry for bigger data. On the other hand, it can be difficult to protect personal private information when collecting such large amount of data. In this dilemma, we propose a federated learning (FL) framework for the heart sound classification task. To the best of our knowledge, this is the first time to introduce FL to this field. We conducted multiple experiments, analysed the impact of data distribution across collaborative institutions on model quality and learning patterns, and verified the feasibility and effectiveness of FL based on real data. Non- independent identically distributed (Non-IID) data and model quality can be effectively improved by adding a strategy of globally sharing data.

OriginalspracheEnglisch
Titel44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1045-1048
Seitenumfang4
ISBN (elektronisch)9781728127828
DOIs
PublikationsstatusVeröffentlicht - 2022
Extern publiziertJa
Veranstaltung44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 - Glasgow, Großbritannien/Vereinigtes Königreich
Dauer: 11 Juli 202215 Juli 2022

Publikationsreihe

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Band2022-July
ISSN (Print)1557-170X

Konferenz

Konferenz44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Land/GebietGroßbritannien/Vereinigtes Königreich
OrtGlasgow
Zeitraum11/07/2215/07/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Federated Learning Paradigm for Heart Sound Classification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren