A dual CNN–RNN for multiple people tracking

Maryam Babaee, Zimu Li, Gerhard Rigoll

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

33 Zitate (Scopus)

Abstract

In this paper, we present a deep learning-based approach, namely a dual CNN–RNN for multiple people tracking. We follow tracking-by-detection paradigm by first training a CNN to measure the similarity of two detection boxes. To solve the data association (DA) problem, we build a graph with nodes as detections and edge costs that are the outputs of a CNN. The general minimum cost lifted multi-cut problem (LMP) and corresponding optimization algorithms are utilized to solve the DA problem. To tackle occlusion and ID-switch problems, an RNN network is proposed to predict the nonlinear motion of people. Moreover, we utilize target motion information to stitch tracklets and build long trajectories. The results of our experiments conducted on Multiple Object Tracking Benchmark 2016 (MOT2016) confirm the efficiency of the proposed algorithm.

OriginalspracheEnglisch
Seiten (von - bis)69-83
Seitenumfang15
FachzeitschriftNeurocomputing
Jahrgang368
DOIs
PublikationsstatusVeröffentlicht - 27 Nov. 2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „A dual CNN–RNN for multiple people tracking“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren