A Deep Learning-based Radar and Camera Sensor Fusion Architecture for Object Detection

Felix Nobis, Maximilian Geisslinger, Markus Weber, Johannes Betz, Markus Lienkamp

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

229 Zitate (Scopus)

Abstract

Object detection in camera images, using deep learning has been proven successfully in recent years. Rising detection rates and computationally efficient network structures are pushing this technique towards application in production vehicles. Nevertheless, the sensor quality of the camera is limited in severe weather conditions and through increased sensor noise in sparsely lit areas and at night. Our approach enhances current 2D object detection networks by fusing camera data and projected sparse radar data in the network layers. The proposed CameraRadarFusion Net (CRF-Net) automatically learns at which level the fusion of the sensor data is most beneficial for the detection result. Additionally, we introduce BlackIn, a training strategy inspired by Dropout, which focuses the learning on a specific sensor type. We show that the fusion network is able to outperform a state-of-the-art image-only network for two different datasets. The code for this research will be made available to the public at: https://github.com/TUMFTM/CameraRadarFusionNet.

OriginalspracheEnglisch
Titel2019 Symposium on Sensor Data Fusion
UntertitelTrends, Solutions, Applications, SDF 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781728150857
DOIs
PublikationsstatusVeröffentlicht - Okt. 2019
Veranstaltung2019 Symposium on Sensor Data Fusion: Trends, Solutions, Applications, SDF 2019 - Bonn, Deutschland
Dauer: 15 Okt. 201917 Okt. 2019

Publikationsreihe

Name2019 Symposium on Sensor Data Fusion: Trends, Solutions, Applications, SDF 2019

Konferenz

Konferenz2019 Symposium on Sensor Data Fusion: Trends, Solutions, Applications, SDF 2019
Land/GebietDeutschland
OrtBonn
Zeitraum15/10/1917/10/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Deep Learning-based Radar and Camera Sensor Fusion Architecture for Object Detection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren