A data-driven predictive energy management strategy for plug-in hybrid vehicles

Jürgen Lohrer, Matthias Förth, Markus Lienkamp

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

Plug-In Hybrid Electric Vehicles show great potential for decreasing the fuel consumption on specified routes. However, in many cases the trip destination or the distance until the next charge is unknown for the vehicle. This paper presents a data-driven, online energy management strategy that is based on a trip and speed profile prediction for a receding horizon, which takes personal points of interest or upcoming charging stations into consideration. Pontryagin's Minimum Principle including a reduced shooting algorithm is applied to optimize the vehicle state. We evaluated the method for multiple trips of varying length and expect an estimated fuel saving of 8.0% compared to a non-predictive approach.

OriginalspracheEnglisch
Titel2017 International Conference on Mechanical, System and Control Engineering, ICMSC 2017
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten297-304
Seitenumfang8
ISBN (elektronisch)9781509065295
DOIs
PublikationsstatusVeröffentlicht - 26 Juni 2017
Veranstaltung2017 International Conference on Mechanical, System and Control Engineering, ICMSC 2017 - St. Petersburg, Russland
Dauer: 19 Mai 201721 Mai 2017

Publikationsreihe

Name2017 International Conference on Mechanical, System and Control Engineering, ICMSC 2017

Konferenz

Konferenz2017 International Conference on Mechanical, System and Control Engineering, ICMSC 2017
Land/GebietRussland
OrtSt. Petersburg
Zeitraum19/05/1721/05/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „A data-driven predictive energy management strategy for plug-in hybrid vehicles“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren