A Current Sensorless Computationally Efficient Model Predictive Control for Matrix Converters

Ali Sarajian, Quanxue Guan, Patrick Wheeler, Davood Arab Khaburi, Ralph Kennel, Jose Rodriquez

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Model Predictive Control (MPC) is becoming more popular than ever as an alternative to conventional modulations such as Space Vector Modulation methods to control matrix converters (MCs). However, the implementation of MPC is computationally expensive, because control objectives are required to evaluate all admissible switching states of the converter. Additionally, a large number of sensors to measure the 3-phase load currents, source currents, source voltages, and input voltages of MCs increases the overall cost. To sort this out, an efficient MPC is proposed for MCs to enable fast computation and low cost. This approach eliminates the calculations of future load currents and source currents for all possible switching states, requiring only two predictions for the calculation of output voltage and input current references. Further, it removes all current sensors by employing a Luenberger observer. A simulation study has demonstrated that the proposed method can reduce the computation overhead and hardware cost dramatically, leading to high-frequency operation and good converter performance.

OriginalspracheEnglisch
TitelIECON 2022 - 48th Annual Conference of the IEEE Industrial Electronics Society
Herausgeber (Verlag)IEEE Computer Society
ISBN (elektronisch)9781665480253
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung48th Annual Conference of the IEEE Industrial Electronics Society, IECON 2022 - Brussels, Belgien
Dauer: 17 Okt. 202220 Okt. 2022

Publikationsreihe

NameIECON Proceedings (Industrial Electronics Conference)
Band2022-October
ISSN (Print)2162-4704
ISSN (elektronisch)2577-1647

Konferenz

Konferenz48th Annual Conference of the IEEE Industrial Electronics Society, IECON 2022
Land/GebietBelgien
OrtBrussels
Zeitraum17/10/2220/10/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Current Sensorless Computationally Efficient Model Predictive Control for Matrix Converters“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren