A counting-strategy together with a spatial structured model describes RNA polymerase and ribosome availability in Escherichia coli

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

The allocation of resources during bacterial growth is strongly related to the availability of ribosomes and RNA polymerase molecules. Here, coarse-grained models offer a promising start due to their simple structure and the limited number of kinetic parameters. Based on published data sets for proteome and mRNA data in Escherichia coli, and together with mass balance equations describing gene expression, we are able to calculate the number of active molecules (that is, the number of ribosomes that are currently translating nascent and mature mRNA, as well as the number of RNA polymerase molecules on the DNA). This information is a prerequisite for meaningful coarse-grained models. In our approach, the cellular compartment is structured into a cytosolic region and a nucleoid region, and the processes of transcription and translation are assigned accordingly. The theoretical study reveals a quadratic relationship between the number of active ribosomes and the growth rate μ. While the overall available number of ribosomes follows the linear “bacterial growth law”, the approach allows us to determine the growth limit for the chosen experimental environment (minimal medium, only one C source). The new approach is in good agreement with published experimental data, and, with a simple rule of thumb can be applied to other cellular systems.

OriginalspracheEnglisch
Seiten (von - bis)145-152
Seitenumfang8
FachzeitschriftMetabolic Engineering
Jahrgang67
DOIs
PublikationsstatusVeröffentlicht - Sept. 2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „A counting-strategy together with a spatial structured model describes RNA polymerase and ribosome availability in Escherichia coli“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren