A convergent string method: Existence and approximation for the Hamiltonian boundary-value problem

Hartmut Schwetlick, Johannes Zimmer

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

Abstract

This chapter studies the existence of long-time solutions to the Hamiltonian boundary value problem, and their consistent numerical approximation. Such a boundary value problem is, for example, common in Molecular Dynamics, where one aims at finding a dynamic trajectory that joins a given initial state with a final one, with the evolution being governed by classical (Hamiltonian) dynamics. The setting considered here is sufficiently general so that long time transition trajectories connecting two configurations can be included, provided the total energy E is chosen suitably. In particular, the formulation presented here can be used to detect transition paths between two stable basins and thus to prove the existence of long-time trajectories. The starting point is the formulation of the equation of motion of classical mechanics in the framework of Jacobi's principle a curve shortening procedure inspired by Birkhoff's method is then developed to find geodesic solutions. This approach can be viewed as a string method.

OriginalspracheEnglisch
TitelDynamical Systems, Number Theory and Applications
UntertitelA Festschrift in Honor of Armin Leutbecher's 80th Birthday
Herausgeber (Verlag)World Scientific Publishing Co. Pte Ltd
Seiten221-254
Seitenumfang34
ISBN (elektronisch)9789814699877
ISBN (Print)9789814699860
DOIs
PublikationsstatusVeröffentlicht - 1 Apr. 2016
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „A convergent string method: Existence and approximation for the Hamiltonian boundary-value problem“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren