A convergent lagrangian discretization for p-Wasserstein and flux-limited diffusion equations

Benjamin Söllner, Oliver Junge

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

We study a Lagrangian numerical scheme for solving a nonlinear drift diffusion equations of the form ∂tu = ∂x(u = (c∗)′[∂xh′(u) + v′]), like Fokker-Plank and q-Laplace equations, on an interval. This scheme will consist of a spatio-temporal discretization founded on the formulation of the equation in terms of inverse distribution functions. It is based on the gradient ow structure of the equation with respect to optimal transport distances for a family of costs that are in some sense p-Wasserstein like. Additionally we will show that, under a regularity assumption on the initial data, this also includes a family of discontinuous, ux-limiting cost inducing equations like Rosenau's relativistic heat equation. We show that this discretization inherits various properties from the continuous ow, like entropy monotonicity, mass preservation, a minimum/maximum principle and ux-limitation in the case of the corresponding cost. Convergence in the limit of vanishing mesh size will be proven as the main result. Finally we will present numerical experiments including a numerical convergence analysis.

OriginalspracheEnglisch
Seiten (von - bis)4227-4256
Seitenumfang30
FachzeitschriftCommunications on Pure and Applied Analysis
Jahrgang19
Ausgabenummer9
DOIs
PublikationsstatusVeröffentlicht - Juni 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „A convergent lagrangian discretization for p-Wasserstein and flux-limited diffusion equations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren