A Continual Learning Approach for Cross-Domain White Blood Cell Classification

Ario Sadafi, Raheleh Salehi, Armin Gruber, Sayedali Shetab Boushehri, Pascal Giehr, Nassir Navab, Carsten Marr

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Accurate classification of white blood cells in peripheral blood is essential for diagnosing hematological diseases. Due to constantly evolving clinical settings, data sources, and disease classifications, it is necessary to update machine learning classification models regularly for practical real-world use. Such models significantly benefit from sequentially learning from incoming data streams without forgetting previously acquired knowledge. However, models can suffer from catastrophic forgetting, causing a drop in performance on previous tasks when fine-tuned on new data. Here, we propose a rehearsal-based continual learning approach for class incremental and domain incremental scenarios in white blood cell classification. To choose representative samples from previous tasks, we employ exemplar set selection based on the model’s predictions. This involves selecting the most confident samples and the most challenging samples identified through uncertainty estimation of the model. We thoroughly evaluated our proposed approach on three white blood cell classification datasets that differ in color, resolution, and class composition, including scenarios where new domains or new classes are introduced to the model with every task. We also test a long class incremental experiment with both new domains and new classes. Our results demonstrate that our approach outperforms established baselines in continual learning, including existing iCaRL and EWC methods for classifying white blood cells in cross-domain environments.

OriginalspracheEnglisch
TitelDomain Adaptation and Representation Transfer - 5th MICCAI Workshop, DART 2023, Held in Conjunction with MICCAI 2023, Proceedings
Redakteure/-innenLisa Koch, M. Jorge Cardoso, Enzo Ferrante, Konstantinos Kamnitsas, Mobarakol Islam, Meirui Jiang, Nicola Rieke, Sotirios A. Tsaftaris, Dong Yang
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten136-146
Seitenumfang11
ISBN (Print)9783031458569
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung5th MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2023 - Vancouver, Kanada
Dauer: 12 Okt. 202312 Okt. 2023

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band14293 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz5th MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2023
Land/GebietKanada
OrtVancouver
Zeitraum12/10/2312/10/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Continual Learning Approach for Cross-Domain White Blood Cell Classification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren