A Comparative Cross Language View On Acted Databases Portraying Basic Emotions Utilising Machine Learning

F. Burkhardt, A. Hacker, U. Reichel, H. Wierstorf, F. Eyben, B. W. Schuller

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

For several decades emotional databases have been recorded by various laboratories. Many of them contain acted portrays of Darwin's famous “big four” basic emotions. In this paper, we investigate in how far a selection of them are comparable by two approaches: on the one hand modeling similarity as performance in cross database machine learning experiments and on the other by analyzing a manually picked set of four acoustic features that represent different phonetic areas. It is interesting to see in how far specific databases (we added a synthetic one) perform well as a training set for others while some do not. Generally speaking, we found indications for both similarity as well as potential language-specific differences.

OriginalspracheEnglisch
Titel2022 Language Resources and Evaluation Conference, LREC 2022
Redakteure/-innenNicoletta Calzolari, Frederic Bechet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Helene Mazo, Jan Odijk, Stelios Piperidis
Herausgeber (Verlag)European Language Resources Association (ELRA)
Seiten1917-1924
Seitenumfang8
ISBN (elektronisch)9791095546726
PublikationsstatusVeröffentlicht - 2022
Extern publiziertJa
Veranstaltung13th International Conference on Language Resources and Evaluation Conference, LREC 2022 - Marseille, Frankreich
Dauer: 20 Juni 202225 Juni 2022

Publikationsreihe

Name2022 Language Resources and Evaluation Conference, LREC 2022

Konferenz

Konferenz13th International Conference on Language Resources and Evaluation Conference, LREC 2022
Land/GebietFrankreich
OrtMarseille
Zeitraum20/06/2225/06/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Comparative Cross Language View On Acted Databases Portraying Basic Emotions Utilising Machine Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren