A Comparative Assessment of Online and Offline Bayesian Estimation of Deterioration Model Parameters

Antonios Kamariotis, Luca Sardi, Iason Papaioannou, Eleni N. Chatzi, Daniel Straub

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Many preventive maintenance schemes for managing structural deterioration rely on stochastic deterioration models. In this context, continuous structural health information can be employed within a Bayesian framework to update the distributions of the time-invariant deterioration model parameters. Bayesian parameter estimation can be performed either in an online or an offline fashion. In this contribution, we investigate different online and offline algorithms implemented for learning the model parameters, and their uncertainty, considering a probabilistic model of fatigue crack growth that is updated with continuous crack monitoring measurements. The numerical investigations provide insights on the performance of the different algorithms in terms of accuracy of the posterior estimates and computational cost.

OriginalspracheEnglisch
TitelModel Validation and Uncertainty Quantification, Volume 3 - Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics, 2022
Redakteure/-innenZhu Mao
Herausgeber (Verlag)Springer
Seiten17-20
Seitenumfang4
ISBN (Print)9783031040894
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung40th IMAC, A Conference and Exposition on Structural Dynamics, 2022 - Orlando, USA/Vereinigte Staaten
Dauer: 7 Feb. 202210 Feb. 2022

Publikationsreihe

NameConference Proceedings of the Society for Experimental Mechanics Series
ISSN (Print)2191-5644
ISSN (elektronisch)2191-5652

Konferenz

Konferenz40th IMAC, A Conference and Exposition on Structural Dynamics, 2022
Land/GebietUSA/Vereinigte Staaten
OrtOrlando
Zeitraum7/02/2210/02/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Comparative Assessment of Online and Offline Bayesian Estimation of Deterioration Model Parameters“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren