A Biologically-Inspired Global Localization System for Mobile Robots Using LiDAR Sensor

Genghang Zhuang, Carlo Cagnetta, Zhenshan Bing, Hu Cao, Xinyi Li, Kai Huang, Alois Knoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

Localization in the environment is an essential navigational capability for animals and indoor robotic vehicles. In indoor environments, it is still challenging to perfectly solve the global localization problem using probabilistic methods. However, animals are able to instinctively localize themselves with much less effort. Therefore, an intriguing and promising approach is to seek biological inspiration from animals. In this paper, we present a biologically-inspired global localization system using a LiDAR sensor that utilizes a hippocampal model and a landmark-based relocalization approach. The experiment results show that the proposed method is competitive with Monte Carlo Localization, and the results demonstrate the high accuracy, applicability, and reliability of the proposed biologically-inspired localization system in various localization scenarios.

OriginalspracheEnglisch
Titel2022 IEEE Intelligent Vehicles Symposium, IV 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten984-990
Seitenumfang7
ISBN (elektronisch)9781665488211
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IEEE Intelligent Vehicles Symposium, IV 2022 - Aachen, Deutschland
Dauer: 5 Juni 20229 Juni 2022

Publikationsreihe

NameIEEE Intelligent Vehicles Symposium, Proceedings
Band2022-June

Konferenz

Konferenz2022 IEEE Intelligent Vehicles Symposium, IV 2022
Land/GebietDeutschland
OrtAachen
Zeitraum5/06/229/06/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Biologically-Inspired Global Localization System for Mobile Robots Using LiDAR Sensor“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren