A bag-of-audio-words approach for snore sounds' excitation localisation

Maximilian Schmitt, Christoph Janott, Vedhas Pandit, Kun Qian, Clemens Heiser, Werner Hemmert, Björn Schuller

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

28 Zitate (Scopus)

Abstract

Habitual snoring and Obstructive Sleep Apnea are serious conditions that can affect the health of the snorer. For a targeted surgical treatment, it is crucial to identify the exact location of the vibration within the upper airways. As opposed to earlier work, we present the first unsupervised feature learning approach to this task based on bags-of-audio-words. Likewise, we cluster feature values within a given time-segment into acoustic 'words'. The frequency of occurrence per such word is then represented in a histogram per sound chunk to classify between four excitation locations. In extensive test runs based on snore sound data of 24 patients labelled by experts, we evaluated several feature sets as basis for audio word creation. In the result, we find audio words based on wavelet features, formants, and MFCC to be highly suited and outperform previous experiments based on the same data set.

OriginalspracheEnglisch
TitelSpeech Communication - 12. ITG-Fachtagung Sprachkommunikation
Herausgeber (Verlag)VDE VERLAG GMBH
Seiten230-234
Seitenumfang5
ISBN (elektronisch)9783800742752
PublikationsstatusVeröffentlicht - 2016
Veranstaltung12. ITG-Fachtagung Sprachkommunikation - 12th ITG Conference on Speech Communication - Paderborn, Deutschland
Dauer: 5 Okt. 20167 Okt. 2016

Publikationsreihe

NameSpeech Communication - 12. ITG-Fachtagung Sprachkommunikation

Konferenz

Konferenz12. ITG-Fachtagung Sprachkommunikation - 12th ITG Conference on Speech Communication
Land/GebietDeutschland
OrtPaderborn
Zeitraum5/10/167/10/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „A bag-of-audio-words approach for snore sounds' excitation localisation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren