6DoF Pose Estimation for Industrial Manipulation Based on Synthetic Data

Manuel Brucker, Maximilian Durner, Zoltán Csaba Márton, Ferenc Bálint-Benczédi, Martin Sundermeyer, Rudolph Triebel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

1 Zitat (Scopus)

Abstract

We present a perception system for mobile manipulation tasks. The primary design goal of the proposed system is to minimize human interaction during system setup which is achieved by several means, such as automatic training data generation, the use of simulated training data, and 3D model based geometric matching. We employ a state-of-the art deep-learning based bounding box detector for rough localization of objects and a Point Pair Feature based matching algorithm for 6DoF pose estimation. The proposed approach shows promising results on our recently published dataset for industrial object detection and pose estimation. Furthermore, the system’s performance during four days of live operation at the Automatica 2018 trade fair is analyzed and failure cases are presented and discussed.

OriginalspracheEnglisch
TitelSpringer Proceedings in Advanced Robotics
Herausgeber (Verlag)Springer Science and Business Media B.V.
Seiten675-684
Seitenumfang10
DOIs
PublikationsstatusVeröffentlicht - 2020
Extern publiziertJa

Publikationsreihe

NameSpringer Proceedings in Advanced Robotics
Band11
ISSN (Print)2511-1256
ISSN (elektronisch)2511-1264

Fingerprint

Untersuchen Sie die Forschungsthemen von „6DoF Pose Estimation for Industrial Manipulation Based on Synthetic Data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren