3DQ: Compact Quantized Neural Networks for Volumetric Whole Brain Segmentation

Magdalini Paschali, Stefano Gasperini, Abhijit Guha Roy, Michael Y.S. Fang, Nassir Navab

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

16 Zitate (Scopus)

Abstract

Model architectures have been dramatically increasing in size, improving performance at the cost of resource requirements. In this paper we propose 3DQ, a ternary quantization method, applied for the first time to 3D Fully Convolutional Neural Networks, enabling 16x model compression while maintaining performance on par with full precision models. We extensively evaluate 3DQ on two datasets for the challenging task of whole brain segmentation. Additionally, we showcase the ability of our method to generalize on two common 3D architectures, namely 3D U-Net and V-Net. Outperforming a variety of baselines, the proposed method is capable of compressing large 3D models to a few MBytes, alleviating the storage needs in space-critical applications.

OriginalspracheEnglisch
TitelMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
Redakteure/-innenDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten438-446
Seitenumfang9
ISBN (Print)9783030322472
DOIs
PublikationsstatusVeröffentlicht - 2019
Veranstaltung22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Dauer: 13 Okt. 201917 Okt. 2019

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band11766 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Land/GebietChina
OrtShenzhen
Zeitraum13/10/1917/10/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „3DQ: Compact Quantized Neural Networks for Volumetric Whole Brain Segmentation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren