3D Object Detection with a Self-supervised Lidar Scene Flow Backbone

Emeç Erçelik, Ekim Yurtsever, Mingyu Liu, Zhijie Yang, Hanzhen Zhang, Pınar Topçam, Maximilian Listl, Yılmaz Kaan Çaylı, Alois Knoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

8 Zitate (Scopus)

Abstract

State-of-the-art lidar-based 3D object detection methods rely on supervised learning and large labeled datasets. However, annotating lidar data is resource-consuming, and depending only on supervised learning limits the applicability of trained models. Self-supervised training strategies can alleviate these issues by learning a general point cloud backbone model for downstream 3D vision tasks. Against this backdrop, we show the relationship between self-supervised multi-frame flow representations and single-frame 3D detection hypotheses. Our main contribution leverages learned flow and motion representations and combines a self-supervised backbone with a supervised 3D detection head. First, a self-supervised scene flow estimation model is trained with cycle consistency. Then, the point cloud encoder of this model is used as the backbone of a single-frame 3D object detection head model. This second 3D object detection model learns to utilize motion representations to distinguish dynamic objects exhibiting different movement patterns. Experiments on KITTI and nuScenes benchmarks show that the proposed self-supervised pre-training increases 3D detection performance significantly. https://github.com/emecercelik/ssl-3d-detection.git.

OriginalspracheEnglisch
TitelComputer Vision – ECCV 2022 - 17th European Conference, Proceedings
Redakteure/-innenShai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten247-265
Seitenumfang19
ISBN (Print)9783031200793
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel
Dauer: 23 Okt. 202227 Okt. 2022

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13670 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz17th European Conference on Computer Vision, ECCV 2022
Land/GebietIsrael
OrtTel Aviv
Zeitraum23/10/2227/10/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „3D Object Detection with a Self-supervised Lidar Scene Flow Backbone“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren