3D Indoor Mapping with the Microsoft Hololens: Qualitative and Quantitative Evaluation by Means of Geometric Features

M. Weinmann, M. A. Jäger, S. Wursthorn, B. Jutzi, M. Weinmann, P. Hübner

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

16 Zitate (Scopus)

Abstract

3D indoor mapping and scene understanding have seen tremendous progress in recent years due to the rapid development of sensor systems, reconstruction techniques and semantic segmentation approaches. However, the quality of the acquired data strongly influences the accuracy of both reconstruction and segmentation. In this paper, we direct our attention to the evaluation of the mapping capabilities of the Microsoft HoloLens in comparison to high-quality TLS systems with respect to 3D indoor mapping, feature extraction and semantic segmentation. We demonstrate how a set of rather interpretable low-level geometric features and the resulting semantic segmentation achieved with a Random Forest classifier applied on these features are affected by the quality of the acquired data. The achieved results indicate that, while allowing for a fast acquisition of room geometries, the HoloLens provides data with sufficient accuracy for a wide range of applications.

OriginalspracheEnglisch
Seiten (von - bis)165-172
Seitenumfang8
FachzeitschriftISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Jahrgang5
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 3 Aug. 2020
Extern publiziertJa
Veranstaltung2020 24th ISPRS Congress on Technical Commission I - Nice, Virtual, Frankreich
Dauer: 31 Aug. 20202 Sept. 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „3D Indoor Mapping with the Microsoft Hololens: Qualitative and Quantitative Evaluation by Means of Geometric Features“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren