3D Equivariant Graph Implicit Functions

Yunlu Chen, Basura Fernando, Hakan Bilen, Matthias Nießner, Efstratios Gavves

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

13 Zitate (Scopus)

Abstract

In recent years, neural implicit representations have made remarkable progress in modeling of 3D shapes with arbitrary topology. In this work, we address two key limitations of such representations, in failing to capture local 3D geometric fine details, and to learn from and generalize to shapes with unseen 3D transformations. To this end, we introduce a novel family of graph implicit functions with equivariant layers that facilitates modeling fine local details and guaranteed robustness to various groups of geometric transformations, through local k-NN graph embeddings with sparse point set observations at multiple resolutions. Our method improves over the existing rotation-equivariant implicit function from 0.69 to 0.89 (IoU) on the ShapeNet reconstruction task. We also show that our equivariant implicit function can be extended to other types of similarity transformations and generalizes to unseen translations and scaling.

OriginalspracheEnglisch
TitelComputer Vision – ECCV 2022 - 17th European Conference, Proceedings
Redakteure/-innenShai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten485-502
Seitenumfang18
ISBN (Print)9783031200618
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel
Dauer: 23 Okt. 202227 Okt. 2022

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13663 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz17th European Conference on Computer Vision, ECCV 2022
Land/GebietIsrael
OrtTel Aviv
Zeitraum23/10/2227/10/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „3D Equivariant Graph Implicit Functions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren