3D DENSITY-GRADIENT BASED EDGE DETECTION ON NEURAL RADIANCE FIELDS (NERFS) FOR GEOMETRIC RECONSTRUCTION

Miriam Jäger, Boris Jutzi

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

3 Zitate (Scopus)

Abstract

Generating geometric 3D reconstructions from Neural Radiance Fields (NeRFs) is of great interest. However, accurate and complete reconstructions based on the density values are challenging. The network output depends on input data, NeRF network configuration and hyperparameter. As a result, the direct usage of density values, e.g. via filtering with global density thresholds, usually requires empirical investigations. Under the assumption that the density increases from non-object to object area, the utilization of density gradients from relative values is evident. As the density represents a position-dependent parameter it can be handled anisotropically, therefore processing of the voxelized 3D density field is justified. In this regard, we address geometric 3D reconstructions based on density gradients, whereas the gradients result from 3D edge detection filters of the first and second derivatives, namely Sobel, Canny and Laplacian of Gaussian. The gradients rely on relative neighboring density values in all directions, thus are independent from absolute magnitudes. Consequently, gradient filters are able to extract edges along a wide density range, almost independent from assumptions and empirical investigations. Our approach demonstrates the capability to achieve geometric 3D reconstructions with high geometric accuracy on object surfaces and remarkable object completeness. Notably, Canny filter effectively eliminates gaps, delivers a uniform point density, and strikes a favorable balance between correctness and completeness across the scenes.

OriginalspracheEnglisch
Seiten (von - bis)71-78
Seitenumfang8
FachzeitschriftInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
Jahrgang48
Ausgabenummer1/W3-2023
DOIs
PublikationsstatusVeröffentlicht - 19 Okt. 2023
Extern publiziertJa
Veranstaltung2nd GEOBENCH Workshop on Evaluation and BENCHmarking of Sensors, Systems and GEOspatial Data in Photogrammetry and Remote Sensing, GEOBENCH 2023 - Krakow, Polen
Dauer: 23 Okt. 202324 Okt. 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „3D DENSITY-GRADIENT BASED EDGE DETECTION ON NEURAL RADIANCE FIELDS (NERFS) FOR GEOMETRIC RECONSTRUCTION“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren