2D Spatial Keystone Transform for Sub-Pixel Motion Extraction from Noisy Occupancy Grid Map

Hongqi Fan, Dawei Lu, Tomasz P. Kucner, Martin Magnusson, Achim Lilienthal

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

In this paper, we propose a novel sub-pixel motion extraction method, called as Two Dimensional Spatial Keystone Transform (2DS-KST), for the motion detection and estimation from successive noisy Occupancy Grid Maps (OGMs). It extends the KST in radar imaging or motion compensation to 2D real spatial case, based on multiple hypotheses about possible directions of moving obstacles. Simulation results show that 2DS-KST has a good performance on the extraction of sub-pixel motions in very noisy environment, especially for those slowly moving obstacles.

OriginalspracheEnglisch
Titel2018 21st International Conference on Information Fusion, FUSION 2018
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten2400-2406
Seitenumfang7
ISBN (Print)9780996452762
DOIs
PublikationsstatusVeröffentlicht - 5 Sept. 2018
Extern publiziertJa
Veranstaltung21st International Conference on Information Fusion, FUSION 2018 - Cambridge, Großbritannien/Vereinigtes Königreich
Dauer: 10 Juli 201813 Juli 2018

Publikationsreihe

Name2018 21st International Conference on Information Fusion, FUSION 2018

Konferenz

Konferenz21st International Conference on Information Fusion, FUSION 2018
Land/GebietGroßbritannien/Vereinigtes Königreich
OrtCambridge
Zeitraum10/07/1813/07/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „2D Spatial Keystone Transform for Sub-Pixel Motion Extraction from Noisy Occupancy Grid Map“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren