ΣiGMA: Scale-Invariant Global Sparse Shape Matching

Maolin Gao, Paul Roetzer, Marvin Eisenberger, Zorah Lahner, Michael Moeller, Daniel Cremers, Florian Bernard

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

We propose a novel mixed-integer programming (MIP) formulation for generating precise sparse correspondences for highly non-rigid shapes. To this end, we introduce a projected Laplace-Beltrami operator (PLBO) which combines intrinsic and extrinsic geometric information to measure the deformation quality induced by predicted correspondences. We integrate the PLBO, together with an orientation-aware regulariser, into a novel MIP formulation that can be solved to global optimality for many practical problems. In contrast to previous methods, our approach is provably invariant to rigid transformations and global scaling, initialisation-free, has optimality guarantees, and scales to high resolution meshes with (empirically observed) linear time. We show state-of-the-art results for sparse non-rigid matching on several challenging 3D datasets, including data with inconsistent meshing, as well as applications in mesh-to-point-cloud matching.

OriginalspracheEnglisch
TitelProceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten645-654
Seitenumfang10
ISBN (elektronisch)9798350307184
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, Frankreich
Dauer: 2 Okt. 20236 Okt. 2023

Publikationsreihe

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Konferenz

Konferenz2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Land/GebietFrankreich
OrtParis
Zeitraum2/10/236/10/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „ΣiGMA: Scale-Invariant Global Sparse Shape Matching“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren