Abstract
A sharply 2-transitive (3-transitive) group T can be described by means of a neardomain F (a KT-field(F,ε)). We show, that T has a least nontrivial normal subgroup Ā (S(F,ε)), if F is a nearfield or if Char F ≠ 2. In this case the nontrivial normal subgroups of T correspond bijectively with all normal subgroups of F* (the multiplicative group of F) containing a set D (D(Q)). If F is a nearfield or if F has a suitable central element, then the group S(F,ε) is simple.
Originalsprache | Deutsch |
---|---|
Seiten (von - bis) | 182-193 |
Seitenumfang | 12 |
Fachzeitschrift | Journal of Geometry |
Jahrgang | 61 |
Ausgabenummer | 1-2 |
DOIs | |
Publikationsstatus | Veröffentlicht - 1998 |